Time-based Coordination in Geo-Distributed Cyber-Physical Systems
نویسندگان
چکیده
Emerging Cyber-Physical Systems (CPS) such as connected vehicles and smart cities span large geographical areas. These systems are increasingly distributed and interconnected. Hence, a hierarchy of cloudlet and cloud deployments will be key to enable scaling, while simultaneously hosting the intelligence behind these systems. Given that CPS applications are often safety-critical, existing techniques focus on reducing latency to provide real-time performance. While low latency is useful, a shared and precise notion of time is key to enabling coordinated action in distributed CPS. In this position paper, we argue for a global Quality of Time (QoT)-based architecture, centered around a shared virtualized notion of time, based on the timeline abstraction [1]. Our architecture allows applications to specify their QoT requirements, while exposing timing uncertainty to the application. The timeline abstraction with the associated knowledge of QoT enables scalable geo-distributed coordination in CPS, while providing avenues for fault tolerance and graceful degradation in the face of adversity.
منابع مشابه
On Coordination of Cyber-physical Systems
The physical world will be saturated by networked devices with sensing and actuating capabilities. This trend will generate profound impacts on our way of monitoring and controlling the physical world, and meanwhile bring us towards a cyber-physical convergence era. Along this trend, a new type of systems, named Cyber-Physical Systems (CPS), is developed by taking into consideration the cyber a...
متن کاملDistributed Real-Time Software for Cyber-Physical Systems
Real-time embedded software today is commonly built using programming abstractions with little or no temporal semantics. This paper addresses this problem by presenting a programming model called PTIDES that serves as a coordination language for model-based design of distributed real-time embedded systems. Specifically, the paper describes the principles of PTIDES, which leverages network time ...
متن کاملImplementation of a Low-Latency Contention-Free Geographical Routing Scheme for Mobile Cyber-Physical Systems
Results and lessons learned from the implementation of a novel ultra low-latency geo-routing scheme are presented in this paper. The geo-routing scheme is intended for team-based mobile cyber-physical systems whereby a cluster of unmanned vehicles (robots) are deployed to accomplish a critical mission under human supervision. The contention-free nature of the developed scheme lends itself to jo...
متن کاملResearch on Human Sensory Architecture for Cyber Physical Systems
CPS is complex distributed systems, which contain computing, communications, and control. CPS is a product of the combination of physical world and the cyber world. The cyber world needs a lot of physical equipment to deal with perception and communication, then collect and transfer the information in the real environment, and by computation to forecast what might happen in future real environm...
متن کاملApproaches to Modeling and Simulation for Dynamic, Distributed Cyber-Physical Systems
In this paper we discuss challenges and new directions in modeling and simulation for effects-based what-if and sensitivity analysis of dynamic, distributed cyber-physical systems. We are motivated on one hand by the critical need to reliably understand how mission-critical cyber-physical systems would respond to unanticipated effects, and on the other hand by the technology gap that has preven...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017